Законы Кеплера. Космические скорости

Можно показать, что , где s - секториальная скорость , т.е. площадь, описываемая радиус-вектором движущегося тела в единицу времени.

Таким образом, секториальная скорость для движущегося тела есть величина постоянная - это формулировка второго обобщенного закона Кеплера , а соотношение (3.11) есть математическое выражение этого закона.

Пусть некоторое тело массы m движется вокруг центрального тела массы M по эллипсу. Тогда секториальная скорость равна , где - площадь эллипса, Т - период обращения тела, a и b - большая и малая полуоси эллипса соответственно. Полуоси эллипса связаны между собой соотношением: , где e - эксцентриситет эллипса. Учитывая это, а также формулу (3.8), получим: , где . Отсюда после преобразований имеем:

Это есть вторая форма записи третьего обобщенного закона Кеплера.

Если рассматривать движение двух планет вокруг Солнца, т.e. вокруг одного и того же тела (М 1 = 2), и пренебречь массами планет (т 1 =m 2 = 0) в сравнении с массой Солнца, то получим формулу (2.7), выведенную Кеплером из наблюдений. Так как массы планет в сравнении с массой Солнца незначительны, то формула Кеплера достаточно хорошо согласуется с наблюдениями.

Формулы (3.12) и (3.13) играют большую роль в астрономии: они дают возможность определять массы небесных тел (см. § 3.6).

Дифференциальное уравнение (2) имеет следующие первые интегралы:

Интеграл площадей

Где - постоянный вектор момента количества движения. В силу постоянства орбита тела будет являться плоской кривой. Если в этой плоскости ввести полярные координаты r и υ, то интеграл площадей можно записать в виде:

………………….. (4)

из которого следует второй закон Кеплера (закон площадей). Если –площадь, описываемая радиусом вектором за интервал времени , то секториальная скорость:

. (5)

(6)

Иными словами, площадь описываемая радиус – вектором, пропорциональна интервалам времени движения.

Сила, входящая в уравнение относительного движения, является потенциальной. Потенциал этой силы определяется выражением

Интеграл энергии. Из уравнения движения (2) следует закон сохранения энергии

(7)

Здесь - постоянная, равная полной механической энергии, отнесенной к массе движущегося тела.

Так как то при уравнение (7) будет выполняться для любых r , и движение не ограничено в пространстве. При ˂ 0 движение ограничено в пространстве.

В общем виде уравнение орбиты (решение уравнение (2)) имеет вид:

, (8)

где - истинная аномалия и – эксцентриситет.

Величина эксцентриситета определяется значением полной энергии и равна:

. (9)

фокальный параметр равен:

(10)

Как видно из (9), возможны три вида траекторий:

    0 ≤ е ˂ 1 (һ˂0) - эллипс (е = 0 – окружность);

    е = 1 (һ=0) - парабола;

    е > 1 (һ>0) - гипербола.

Формула (8) определяет собой аналитическое выражение первого обобщенного закона Кеплера. (схема 8)

Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений – кругу, эллипсу, параболе или гиперболе.

В общем случае при эллиптическом движении наиболее близкая к центральному телу точка орбиты называется перицентром , а наиболее далекая – апоцентром. При движении вокруг Солнца эти точки называются перигелием и афелием.

Третий обобщенный закон Кеплера. Для эллиптического движения легко получить связь между сидерическим периодом обращения Т и большой полуосью а орбиты. Учитывая, что площадь эллипса и радиус – вектор описывает его за период Т, имеем из (5): . С другой стороны, из (10) следует, что

…… (11)

Приравнивая эти два выражения, получим:

(12)

Это соотношение представляет собой третий обобщенный закон Кеплера. Он справедлив для любых двух притягивающихся материальных тел, будь то планеты, двойные звезды или искусственные небесные тела, ибо в правую часть соотношения (12) входят универсальные постоянные.

Пусть М 1 – масса Солнца, m 1 – масса планеты, a 1 и Т 1 – соответственно большая полуось и сидерический период обращения планеты вокруг Солнца. Если имеется другая система, например планета М 2 и спутник планеты массой m 2 , который обращается вокруг планеты с периодом Т 2 на среднем расстоянии a 2 , то для этих двух систем справедлив третий обобщенный закон Кеплера (12), который принимает вид:

= (13)

При движении двух тел малой массы вокруг одного центрального тела, например при движении планет вокруг Солнца, в формуле (13) следует положить М 1 = М 2 , m 1 « М 1 , m 2 « М 2 , и тогда

то есть получаем третий эмпирический закон Кеплера.

Из выражения для эксцентриситета (9) и (11) легко найти, что

Тогда уравнение интеграла энергии (7) принимает вид:

(14)

Эта формула справедлива для любого типа движения. Для эллиптической орбиты a > 0, для параболической орбиты a = , а для гиперболической a ˂ 0.

Характеристические скорости кеплеровского движения . Для каждого расстояния r от центрального тела имеются две характерные скорости: одна при r = a круговая скорость

(15)

имея которую, обращающееся тело движется по круговой орбите; другая – параболическая скорость

при которой движущееся тело уходит центрального тела по параболе a = . Очевидно, что всегда .

При обращении тела по эллиптической орбите средняя орбитальная скорость совпадает с круговой скоростью

(16)

где a - большая полуось орбиты и - сидерический период обращения. Из равенств (14) и (16) найдем, что в любой точке эллиптической орбиты на расстоянии r от центрального тела обращающееся тело имеет скорость

(17)

Скорость в перицентре определяется при r = q = a (1 - e ), а скорость в апоцентре – при r = Q = a (1 + e ).

В ограниченной задаче двух тел и определяется только массой центрального тела. Пренебрегая в первом приближении взаимным притяжением планет, можно рассматривать движение каждой из них вокруг Солнца в условиях ограниченной задачи двух тел. Тогда у любой планеты средняя скорость

Задача двух тел

Уравнение движения

= - (М + m)

Интеграл

Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник — объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами — Сатурна и Юпитера — он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса — тетраэдр (правильный четырехгранник) и т. д. Шесть сфер планет, пять вписанных между ними правильных многогранников — казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546-1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача — определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек — фокусов — равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, — это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно — Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений — главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам — подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала — накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона , закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам — гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним — и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

Между сферами Марса и Земли — додекаэдр (двенадцатигранник); между сферами Земли и Венеры — икосаэдр (двадцатигранник); между сферами Венеры и Меркурия — октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). — Примечание переводчика.

Обладал незаурядными математическими способностями. В начале XVII века в результате многолетних наблюдений за движением планет, а также на основе анализа астрономических наблюдений Тихо Браге, Кеплер открыл три закона, названных впоследствии его именем.

Первый закон Кеплера (закон элипсов). Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (закон равных площадей). Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, заметает собой равные площади.

Третий закон Кеплера (гармонический закон). Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Давайте рассмотри подробнее каждый из законов.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Первый закон описывает геометрию траекторий планетарных орбит. Представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание. Получившейся фигурой будет эллипс. Форма эллипса и степень его сходства с окружностью характеризуется отношением e = c / a, где c — расстояние от центра эллипса до его фокуса (фокальное расстояние), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0, и, следовательно, e = 0 эллипс превращается в окружность.

Ближайшая к Солнцу точка P траектории называется перигелием. Точка A, наиболее удалённая от Солнца, — афелием. Расстояние между афелием и перигелием составляет большую ось эллиптической ор-биты. Расстояние между афелием А и перигелием Р составляет большую ось эллиптической ор-биты. Половина длины большой оси, полуось a, — это среднее расстояние от планеты до Солнца. Среднее расстояние от Земли до Солнца называется астрономической единицей (а. е.) и равно 150 млн км.


Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, занимает собой равные площади.

Второй закон описывает изменение скорости движения планет вокруг Солнца. С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. На рисунке, площади секторов выделенных синим, равны и соответственно время, за которое планета пройдет каждый сектор, тоже равно. Земля проходит перигелий в начале января, а афелий в начале июля. Второй закон Кеплера, закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит. Справедливо не только для планет, но и для их спутников.

Третий закон Кеплера позволяет сравнить орбиты планет между собой. Чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты и при движении по орбите ее полный оборот занимает больше времени. Так же с ростом расстояния от Солнца снижается линейная скорость движения планеты.

где T 1 , T 2 — периоды обращения планеты 1 и 2 вокруг Солнца; a 1 > a 2 — длины больших полуосей орбит планет 1 и 2. Полуось — это среднее расстояние от планеты до Солнца.

Познее Ньютон установил, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

где М - масса Солнца, а m 1 и m 2 - масса планеты 1 и 2.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды. Так же зная расстояние планеты до Солнца, можно вычислить продолжительность года (время полного оборота вокруг Солнца). И наоборот, зная продолжительность года, можно вычислить расстояние планеты до Солнца.

Три закона движения планет открытые Кеплером дали точное объяснение неравномерности движения планет. Первый закон описывает геометрию траекторий планетарных орбит. Второй закон описывает изменение скорости движения планет вокруг Солнца. Третий закон Кеплера позволяет сравнить орбиты планет между собой. Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, планеты описывают среди звезд сложнейшие траектории. Для объяснения петлеобразного движения планет древнегреческий ученый К. Пталомей (II в.н. э.), считая Землю расположенной в центре Вселенной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого находится Земля. Эта концепция получила название пталомеевой или геоцентрической системой мира.

В начале XVI века польским астрономом Н. Коперником (1473–1543) обоснована гелиоцентрическая система, согласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория наблюдения Коперника воспринималась как занимательная фантазия. В XVI в. это утверждение рассматривалось церковью как ересь. Известно, что Дж. Бруно, открыто выступивший в поддержку гелиоцентрической системы Коперника, был осужден инквизицией и сожжен на костре.

Закон всемирного тяготения был открыт Ньютоном на основе трех законов Кеплера.

Первый закон Кеплера . Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце (рис. 7.6).


Рис. 7.6


Второй закон Кеплера . Радиус-вектор планеты описывает в равные времена равные площади (рис. 7.7).
Почти все планеты (кроме Плутона) движутся по орбитам, близким к круговым. Для круговых орбит первый и второй законы Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 (Т – период обращения; R – радиус орбиты).

Ньютон решил обратную задачу механики и из законов движения планет получил выражение для гравитационной силы:

(7.5.2)

Как нам уже известно, гравитационные силы являются силами консервативными. При перемещении тела в гравитационном поле консервативных сил по замкнутой траектории работа равна нулю.
Свойство консервативности гравитационных сил позволило нам ввести понятие потенциальной энергии.

Потенциальная энергия тела массы m , расположенного на расстоянии r от большого тела массы М , есть

Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной .

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.

При E < 0 тело не может удалиться от центра притяжения на расстояние r 0 < r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы) (рис.7.8)


Рис. 7.8

Период обращения небесного тела по эллиптической орбите равен периоду обращения по круговой орбите радиуса R , где R – большая полуось орбиты.

При E = 0 тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.

При E < 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первой космической скоростью называется скорость движения тела по круговой орбите вблизи поверхности Земли. Для этого, как следует из второго закона Ньютона, центробежная сила должна уравновешиваться гравитационной силой:

Отсюда


Второй космической скоростью называется скорость движе-ния тела по параболической траектории. Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца (искусственная планета). Для этого необходимо, чтобы кинетическая энергия была не меньше работы по преодолению тяготения Земли:

Отсюда
Третья космическая скорость – скорость движения, при которой тело может покинуть пределы Солнечной системы, преодолев притяжение Солнца:

υ 3 = 16,7·10 3 м/c.

На рисунке 7.8, показаны траектории тел с различными космическими скоростями.

Поделиться: