Эритроциты (RBC) в общем анализе крови, норма и отклонения. Эритроциты – Виды эритроцитов - Эритроцитопоэз Этот процесс осуществляется в определенном порядке

Эритроциты, или красные кровяные тельца, представляют собой клетки, которые у человека и млекопитающих лишены ядра и имеют гомогенную протоплазму.

В структуре эритроцита различают строму - остов клетки и поверхностный слой - оболочку. Оболочка эритроцитов образована липоидно-белковыми комплексами; она непроницаема для коллоидов и ионов К˙ и Na˙ и легко проницаема для анионов Cl", НСО"3, а также ионов Н˙ и ОН". Минеральный состав эритроцитов и плазмы неодинаков: в эритроцитах человека больше калия, чем натрия; в плазме же имеется обратное соотношение этих солей. 90% сухого вещества эритроцитов составляет гемоглобин, а остальные 10% - другие белки, липоиды, глюкоза и минеральные соли.

Для физиологии и клиники важное значение приобрело определение количества эритроцитов в крови, которое производят под микроскопом с помощью счетных камер или же с помощью автоматически действующих электронных приборов.

В 1 мм 3 крови у мужчин содержится около 5 000 000 эритроцитов, у женщин - около 4 500 000. У новорожденных количество эритроцитов больше, чем у взрослых.

Количество эритроцитов в крови может изменяться. Оно увеличивается при низком барометрическом давлении (при подъеме на высоты), при мышечной работе, эмоциональном возбуждении, а также при большой потере организмом воды. Увеличение в крови числа эритроцитов может длиться различное время и не обязательно свидетельствует об увеличении общего их количества в организме. Так, при большой потере воды, вызванной, например, обильным потением, происходит кратковременное сгущение крови, вследствие чего число эритроцитов в единице объема увеличивается, хотя их абсолютное количество в организме и не изменяется. При эмоциональном возбуждении и тяжелой мышечной работе число эритроцитов в крови увеличивается вследствие сокращения селезенки и поступления в общее кровяное русло крови, богатой эритроцитами, из селезеночного кровяного депо.

Увеличение числа эритроцитов в крови в условиях пребывания при пониженном барометрическом давлении обусловлено пониженным поступлением кислорода в кровь. У людей, живущих в высокогорных местностях, число эритроцитов увеличивается за счет их усиленной продукции костным мозгом - органом кроветворения (рис. 3). В этом случае увеличивается не только число эритроцитов в единице объема крови, но и общее их количество в организме.

Уменьшение количества эритроцитов в крови - анемия - наблюдается после кровопотери или же вследствие усиленного разрушения эритроцитов или ослабления их образования.

Диаметр отдельного эритроцита человека равен 7,2-7,5 мк, а объем его примерно 88-90 мк3. Размеры отдельного эритроцита и общее количество их в крови определяют величину их суммарной поверхности. Эта величина имеет большое значение, так как она определяет ту общую поверхность, на которой происходят поглощение и отдача кислорода, т. е.
процесс, являющийся основной физиологической функцией эритроцитов.

Общая поверхность всех эритроцитов крови человека достигает приблизительно 3000 мг, т. е. в 1500 раз больше поверхности всего тела. Такой большой поверхности способствует своеобразная форма эритроцита. Эритроциты человека имеют сплющенную форму с вдавлениями внутрь посередине с обеих сторон (рис. 4). При такой форме в эритроците нет ни одной точки, которая отстояла бы более чем на 0,85 мк от его поверхности, в то время как при шарообразной форме центр клетки находился бы от нее на расстоянии 2,5 мк, а общая поверхность была бы на 20% меньше. Такие отношения поверхности и объема способствуют лучшему выполнению основной функции эритроцита - переносу кислорода от органов дыхания к клеткам организма.

Эта функция осуществляется благодаря наличию в эритроците дыхательного пигмента крови - гемоглобина.

Тот факт, что гемоглобин находится внутри эритроцитов, а не в растворенном состоянии в плазме крови имеет важное физиологическое значение. В результате этого:

1. Уменьшается вязкость крови. Расчеты показывают, что растворение такого же количества гемоглобина в плазме крови повысило бы в несколько раз вязкость крови и резко затруднило бы работу сердца и кровообращение.

2. Уменьшается онкотическое давление плазмы крови, что важно для предотвращения обезвоживания тканей (вследствие перехода тканевой воды в плазму крови).

Ферменты плазмы крови

1) Секреторные – синтезируются в органах, но свое действие оказывают только в сосудистом русле. Например, ЛХАТ, ЛПЛ. ЛХАТ синтезируется в печени, катализирует эстерификацию холестерина в сосудистом русле. ЛПЛ синтезируется в клетках жировой и мышечной ткани, секретируется в кровь и участвует в гидролизе триацилглицеринов, входящих в состав липопротеинов.

2) Индикаторные – синтезируются и оказывают свое действие только в тканях. Появление их в крови говорит о повреждении клеток. Например, АсАТ, АлАТ.

3) Экскреторные – нормальные компоненты желчи, при желчнокаменной болезни попадают в кровь. Например, щелочная фосфатаза, лейцинаминопептидаза.

В плазме крови содержатся промежуточные и конечные продукты обмена белков. Это небелковые азотистые вещества: полипептиды, аминокислоты, мочевина, мочевая кислота, креатин, креатинин, пурины, пиримидины.

Среди безазотистых веществ в крови присутствуют продукты обмена углеводов и липидов: глюкоза, молочная и пировиноградная кислоты, жирные кислоты, глицерин, кетоновые тела.

Постоянными компонентами плазмы являются минеральные вещества: NaCl, КCl, CaCl 2 , MgCl 2 , NaHCO 3 , CaCO 3 , K 2 HPO 4 , Ca(PO 4) 2 , Na 2 SO 4 , незначительные количества соединений Fe, Cu, Zn, I, Mn, Co.

Представлены гемоглобином и небольшим количеством белков стромы.

Различают два основных типа белков плазматической мембраны: поверхностные и интегральные. Поверхностные белки локализованы на внутренней цитоплазматической поверхности мембраны. К ним относятся глицеральдегид-3-фосфатдегидрогеназа, актин, спектрин. Цепи спектрина образуют разветвленную волокнистую сеть. Спектрин стабилизирует и регулирует вместе с актином форму мембраны эритроцитов, которая изменяется при прохождении клеток через капилляры.

Интегральные белки расположены внутри мембраны. Их можно отделить от мембраны только с помощью детергентов или органических растворителей. В мембране имеется анионный канал, делающий ее проницаемой для НСО 3 - и Сl - . Это димер белка и составляет ¼ общего количества белка в мембране. Этот канал имеет большое значение для транспорта СО 2 эритроцитами, канал Na + K + АТФ-азы.

Гемоглобин - основной белок эритроцитов. Это сложный Fe содержащий белок с м.м. 68000. Состоит из белковой части - глобина и простетической группы гема. Молекула имеет 4 субъединицы с М. м. 17 тыс. каждая. В состав субъединицы входит гем и одна полипептидная цепь.

В глобин входит 574 аминокислоты. Различают 2 α и 2 β цепи. α- цепь состоит из 141 аминокислоты, N концевая - валин, С - аргинин. β- цепь имеет 146 аминокислот, N концевая - валин, С - гистидин. Четвертичная структура гемоглобина состоит из 2-х α и 2-х β цепей:



α 2 β 2 . Это основной гемоглобин взрослого человека НbА 1 (adultus).

Гемовые группы находятся на поверхности глобулы в особых карманах, образованных петлями полипептидной цепи. Глобин соединяется через имидазольное кольцо гистидина с гемом по 5 координационной связи железа.


а) Гем б)

в)

Структура гема (а), структура активного центра дезоксигемоглобина (б), структура активного центра оксигемоглобина (в)

Атом железа может образовать шесть координационных связей. Четыре связи направлены к атомам азота пиррольных колец, оставшиеся две связи – перпендикулярно к плоскости порфиринового кольца по обе его стороны. Гемы расположены вблизи поверхности белковой глобулы в специальных карманах, образованных складками полипептидных цепей глобина. Гемоглобин при нормальном функционировании может находиться в одной из трех форм: феррогемоглобин (обычно называемый дезоксигемоглобином или просто гемоглобином), оксигемоглобин и ферригемоглобин (называемый также метгемоглобином). В феррогемоглобине железо находится в закисной форме Fe(II), одна из двух связей, перпендикулярных к плоскости порфиринового кольца, направлена к атому азота гистидинового остатка, а вторая связь свободна (рис. б). Кроме этого гистидинового остатка, называемого проксимальным (соседним), по другую сторону порфиринового кольца и на большем расстоянии от него находится другой гистидиновый остаток – дистальный гистидин, не связанный непосредственно с атомом железа. Взаимодействие молекулярного кислорода со свободным гемом приводит к необратимому окислению атома железа тема . В дезоксигемоглобине глобин предохраняет железо гема от окисления.

Обратимое присоединение кислорода (оксигенация), позволяющее гемоглобину выполнять свою основную функцию переносчика, обеспечивается возможностью образовать прочные пятую и шестую координационные связи и перенести электрон на кислород не от железа (то есть окислить Fe 2+), а от имидазольного кольца проксимального гистидина. Вместо молекулярного кислорода железо гема может присоединить окись углерода СО (угарный газ). Даже небольшие концентрации СО приводят к нарушению кислородпереносящей функции гемоглобина и отравлению угарным газом.

Выше было сказано, что одна молекула гемоглобина содержит четыре субъединицы и, следовательно четыре тема, каждый из которых может обратимо присоединить одну молекулу кислорода. Поэтому реакцию оксигенации можно разделить на четыре стадии:

Нb + О 2 Û HbO 2

НbО 2 + О 2 Û Hb(O 2) 2

Hb(O 2) 2 + О 2 Û Hb(O 2) 3

Hb(O 2) 3 + О 2 Û Hb(O 2) 4

Прежде чем рассмотреть эту главную функциональную реакцию гемоглобина более детально, необходимо сказать несколько слов о мышечном гемоглобине – миоглобине. Он содержит одну молекулу гема и одну полипептидную цепочку, состав и структура которой подобны составу и структуре b-субъединицы гемоглобина. Как и для гемоглобина, важнейшей функцией миоглобина является обратимое присоединение молекулярного кислорода. Эту функцию характеризует так называемая кривая оксигенации, связывающая степень насыщения гемоглобина кислородом (в процентах) с парциальным давлением последнего, р о 2 (мм Hg).

Типичные кривые оксигенации гемоглобина и миоглобина (при условии достижения химического равновесия) приведены на рис. Для миоглобина кривая является гиперболой, как и должно быть в случае одностадийной химической реакции при условии достижения химического равновесия:

Кривые оксигенации миоглобина (а) и гемоглобина (б)

Совершенно другая картина возникает в случае гемоглобина. Кривая диссоциации имеет S-образную форму. Без кислорода молекулы гемоглобина обладают низким сродством к кислороду, затем кривая становится круче и при высоких значениях р О 2 практически сливается с кривой диссоциации миоглобина.

Между гемами одной молекулы гемоглобина существует некоторая связь, благодаря которой присоединение кислорода к одному гему влияет на присоединение кислорода к другому гему той же молекулы. Это явление получило название гем-гем взаимодействия. Физиологический смысл гем-гем взаимодействия очевиден. Сигмоидная форма кривой диссоциации создает условия максимальной отдачи кислорода при переносе гемоглобина от легких с высоким значением р О 2 к тканям с низким значением р О 2 . Для человека значения р О 2 артериальной и венозной крови в нормальных условиях (Т 37°С, рН 7,4) равны соответственно 100 и 40 ммНg. При этом (рис. б) гемоглобин отдает тканям 23% связанного кислорода (степень оксигенации меняется от 98 до 75%). При отсутствии гем-гем взаимодействия для одногемового миоглобина (рис. а) эта величина не превышает 5%. Миоглобин поэтому служит не переносчиком, а депо кислорода и отдает его мышечной ткани лишь при резкой гипоксии, когда насыщение ткани кислородом падает до недопустимо низкого значения.

Функции

Эритроциты - высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO 2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обуславливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2-3 мкм).

Транспорт кислорода обеспечивается гемоглобином (Hb), на долю которого приходится ≈98 % массы белков цитоплазмы эритроцитов (в отсутствии других структурных компонентов). Гемоглобин является тетрамером, в котором каждая белковая цепь несёт гем - комплекс протопорфирина IX с ионом двухвалентного железа, кислород обратимо кординируется с ионом Fe 2+ гемоглобина, образуя оксигемоглобин HbO 2:

Hb + O 2 HbO 2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование - стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты - промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

Транспорт углекислого газа эритроцитами происходит с участием карбоангидразы, содержащейся в их цитоплазме. Этот фермент катализирует обратимое образование бикарбоната из воды и углекислого газа, диффундирующего в эритроциты:

H 2 O + CO 2 H + + HCO 3 –

В результате в цитоплазме накапливаются ионы водорода, однако снижение при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона. Мембрана эритроцита практически непроницаема для катионов, но содержит хлоридные ионые каналы, в результате выход бикарбоната из эритроцита сопровождается входом в него хлорида (хлоридный сдвиг).

Формирование эритроцитов

Бурстобразующая единица эритроцитов (БОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • базофильные нормобласты (имеют базофильное ядро и цитоплазму, начинает синтезироваться гемоглобин),
  • полихроматофильные нормобласты (ядро становится меньше, участки с гемоглобином приобретают оксифильность),
  • оксифильные нормобласты (их ядро расположено на одном конце уже овальной клетки, не способны к делению, содержат много гемоглобина),
  • ретикулоциты (безъядерные, содержат остатки органелл, главным образом шероховатой эндоплазматической сети). Ретикулоциты далее становятся эритроцитами.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы - 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы - 4 мкм в диаметре). У человека диаметр эритроцита составляет 7,2-7,5 мкм, толщина - 2 мкм, объём - 76-110 мкм³.

В одном литре крови содержится эритроцитов:

  • у мужчин 4,5·10 12 /л-5,5·10 12 /л (4,5-5,5 млн в 1 мм³ крови),
  • у женщин - 3,7·10 12 /л-4,7·10 12 /л (3,7-4,7 млн в 1 мм³),
  • у новорождённых - до 6,0·10 12 /л (до 6 млн в 1 мм³),
  • у пожилых людей - 4,0·10 12 /л (меньше 4 млн в 1 мм³).

Переливание крови

Патология

Эритроциты человека: a) нормальные - двояковогнутые; b) нормальные, вид с ребра; c) в гипотоническом растворе, разбухшие (сфероциты); d) в гипертоническом растворе, съёжившиеся (эхиноциты)

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

Примечания

Ссылки

Литература

  • Ю.И. Афансьев. Гистология, цитология и эмбриология / Шубикова Е.А. - 5-е издание. - Москва: «Медицина», 2002. - 744 с. - ISBN 5-225-04523-5
  • С.В. Глушен. Цитология и гистология. Курс лекций. - Минск, 2003.

Эритроциты или красные кровяные тельца – это одни из форменных элементов крови, выполняющие многочисленные функции, обеспечивающие нормальную жизнедеятельности организма:

  • питательная функция заключается в транспортировке аминокислот и липидов;
  • защитная – в связывании при помощи антител токсинов;
  • ферментативная отвечает за перенос различных ферментов и гормонов.

Эритроциты также участвуют в регулировке кислотно-щелочного равновесия и в поддержании изотонии крови.

Тем не менее основная работа эритроцитов заключается в доставке кислорода к тканям, а углекислого газа к лёгким. Поэтому довольно часто их называют «дыхательными» клетками.

Особенности строения эритроцитов

Морфология эритроцитов отличается от строения, формы и размеров других клеток. Для того чтобы эритроциты успешно справлялись с газотранспортной функцией крови, природа наделила их следующими отличительными чертами:


Перечисленные особенности являются мерами приспособления к жизни на суше, которые начали развиваться еще у земноводных и рыб, и достигли своей максимальной оптимизации у высших млекопитающих и человека.

Это интересно! У человека суммарная площадь поверхностей всех эритроцитов, находящихся в крови, составляет около 3 820 м2, а это в 2 000 раз больше чем поверхность тела.

Формирование эритроцитов

Жизнь отдельно взятого эритроцита относительно короткая – 100-120 дней, и ежедневно красный костный мозг человека воспроизводит около 2,5 миллиона этих клеток.

Полноценное развитие эритроцитов (эритропоэз) начинается на 5-м месяце внутриутробного развития плода. До этого момента и в случаях онкологических поражений основного органа кроветворения, эритроциты производятся в печени, селезёнке и тимусе.

Развитие эритроцитов очень схоже с процессом развития самого человека. Зарождение и «внутриутробное развитие» эритроцитов начинается в эритроне – красном ростке кроветворения красного мозга. Всё начинается с полипотентной стволовой клетки крови, которая, видоизменяясь 4 раза, превращается в «зародыш» – эритробласт, и с этого момента уже можно наблюдать морфологические изменения строения и размеров.

Эритробласт . Это круглая, крупная клетка размером от 20 до 25 мкм с ядром, которое состоит из 4-х микроядер и занимает практически 2/3 клетки. Цитоплазма имеет фиолетовый оттенок, который хорошо различим на срезе плоских «кроветворных» костей человека. Практически у всех клеток видны так называемые «ушки», образующиеся за счёт выпячивания цитоплазмы.

Пронормоцит. Размеры пронормоцитной клетки меньше чем у эритробласта – уже 10-20 мкм, это происходит за счёт исчезновения ядрышек. Фиолетовый оттенок начинает светлеть.

Базофильный нормобласт. В почти том же размере клетки – 10-18 мкм, ядро ещё присутствует. Хромантин, придающий клетке светло-фиолетовый цвет начинает собираться в сегменты и внешне базофильный нормобласт имеет пятнистую окраску.

Полихроматофильный нормобласт. Диаметр этой клетки – 9-12 мкм. Ядро начинает деструктивно изменяться. Наблюдается большая концентрация гемоглобина.

Оксифильный нормобласт. Исчезающее ядро смещено из центра клетки к её периферии. Размер клетки продолжает уменьшаться – 7-10 мкм. Цитоплазма становится явно розового цвета с маленькими остатками хромантина (тельца Жоли). Прежде чем попасть в кровь, в норме оксифильный нормобласт должен выдавить наружу или растворить своё ядро при помощи специальных ферментов.

Ретикулоцит. Окраска ретикулоцита ничем не отличается от зрелой формы эритроцита. Красный цвет обеспечивает суммарный эффект от жёлто-зеленоватой цитоплазмы и фиолетово-синего ретикула. Диаметр ретикулоцита колеблется от 9 до 11 мкм.

Нормоцит. Это название зрелой формы эритроцита со стандартными размерами, розовато-красной цитоплазмой. Ядро исчезло полностью, и его место занял гемоглобин. Процесс повышения гемоглобина во время созревания эритроцита происходит постепенно, начиная с самых ранних форм, потому что он достаточно токсичен и для самой клетки.

Ещё одна особенность эритроцитов, которая обуславливает непродолжительный срок жизни – отсутствие ядра не позволяет им делиться и продуцировать белок, и как следствие, это ведёт к накоплению структурных изменений, быстрому старению и гибели.

Дегенеративные формы эритроцитов

При различных заболеваниях крови и других патологиях возможны качественные и количественные изменения нормальных показателей содержания нормоцитов и ретикулоцитов в крови, уровня гемоглобина, а также дегенеративные изменения их размеров, форм и окраски. Ниже рассмотрим изменения, которые затрагивают форму и размеры эритроцитов – пойкилоцитоз, а также основные патологические формы эритроцитов и вследствие каких заболеваний или состояний произошли такие изменения.

Название Изменение формы Патологии
Сфероциты Шаровидная форма обычного размера с отсутствием характерного просветления по центу. Гемолитическая болезнь новорождённых (несовместимость крови по системе АВ0), синдром ДВС, спетицимия, аутоиммунные патологии, обширные ожоги, импланты сосудов и клапанов, другие виды анемий.
Микросфероциты Шарики маленьких размеров от 4 до 6 мкм. Болезнь Минковского-Шоффара (наследственный микросфероцитоз).
Элиптоциты (овалоциты) Овалы или удлинённые формы, вследствие аномалий мембраны. Центральное просветление отсутствует. Наследственный овалоцитоз, талассемия, цирроз печени, анемии: мегобластная, железодефицитная, серповидно-клеточная.
Мишеневидные эритроциты (кодоциты) Плоские клетки, напоминающие своей окраской мишень - бледные по краям и яркое пятно гемоглобина в центре.

Площадь клетки сплющена и увеличена в размерах за счёт избытка холестерина.

Талассемия, гемоглобинопатии, железодефицитная анемия, отравление свинцом, болезни печени (сопровождающихся механической желтухой), удаление селезенки.
Эхиноциты Одинакового размера шипы находятся на одинаковом расстоянии друг от друга. Похожа на морского ежа. Уремия, рак желудка, кровоточащая пептическая язва, осложненной кровотечением, наследственных патологиях, нехватке фосфатов, магния, фосфоглицерина.
Акантоциты Шпоровидные выпячивания разной величины и размеров. Иногда напоминают кленовые листья. Токсический гепатит, цирроз, тяжелые формы сфероцитоза, нарушение липидного обмена, спленэктомия, при гепаринотерапии.
Серповидные эритроциты (дрепаноциты) Похожи на листья остролиста или на серп. Изменения мембраны происходят под воздействием повышенного количества особой формы гемоглобина-s. Серповидноклеточная анемия, гемоглобинопатии.
Стоматоциты Превышают обычный размер и объём на 1/3. Центральное просветление не круглое, а в виде полосы.

При осаждении становятся похожи на чаши.

Наследственные сфероцитоз, и стоматоцитозе, опухоли различной этиологии, алкоголизм, цирроз печени, кардиоваскулярная патология, приём некоторых лекарств.
Дакриоциты Напоминают слезу (каплю) или головастика. Миелофиброз, миелоидная метаплазия, рост опухоли при гранулёме, лимфоме и фиброзе, талассемия, осложнённый дефицит железа, гепатит (токсический).

Дополним информацию о серповидных эритроцитах и эхиноцитах.

Серповидноклеточная анемия наиболее распространена в регионах, эндемичных по малярии. Больные с такой анемией обладают повышенной наследственной устойчивостью к заражению малярией, при этом серповидные эритроциты тоже не поддаются заражению. Не представляется возможным точно описать признаки серповидной анемии. Поскольку серповидные эритроциты характеризуются повышенной хрупкостью мембран, то из-за этого часто возникают закупорки капилляров, приводящие к самым разнообразным симптомам по силе тяжести и характеру проявлений. Однако самые типичные – это механическая желтуха, чёрного цвета моча и частые обмороки.

В крови человека всегда присутствует определённое количество эхиноцитов. Старение и разрушение эритроцитов сопровождается понижением синтеза АТФ. Именно этот фактор становится основной причиной естественного превращения дискообразных нормоцитов в клетки с характерными выступами. Прежде чем погибнуть, эритроцит проходит следующий стадии преобразования – вначале 3 класса эхиноцитов, а затем 2 класса сфероэхиноцитов.

Красные кровяные тельца крови заканчивают свой жизненный путь в селезёнке и печени. Такой ценный гемоглобин распадётся на две составляющих – гем и глобин. Гем в свою очередь разделится на билирубин и ионы железа. Билирубин выведется из организма человека, вместе с другими токсичными и нетоксичными остатками эритроцитов, через желудочно-кишечный тракт. А вот ионы железа, как строительный материал, будут направлены в костный мозг для синтеза нового гемоглобина и рождения новых эритроцитов.

Эритроциты (erythrosytus) это форменные элементы крови.

Функция эритроцитов

Основные функции эритроцитов - регуляция в крови КОС, транспорт по организму О 2 и СО 2 . Эти функции реализуются с участием гемоглобина. Кроме того, эритроциты на своей клеточной мембране адсорбируют и транспортируют аминокислоты, антитела, токсины и ряд лекарственных веществ.

Строение и химический состав эритроцитов

Эритроциты у человека и млекопитающих в токе крови обычно (80%) имеют форму двояковогнутых дисков и называются дискоцитами . Такая формаэритроцитов создаёт наибольшую площадь поверхности по отношению к объёму, что обеспечивает максимальный газообмен, а такжеобеспечива­ет большую пластичность при прохождении эритроцитами мелких капилляров.

Диаметр эритроцитов у человека колеблется от 7,1 до 7,9 мкм, толщина эритроцитов в краевой зоне - 1,9 - 2,5 мкм, в центре - 1 мкм. В нормальной крови указанные размеры имеют 75% всех эритроцитов - нормоциты ; большие размеры (свыше 8,0 мкм) - 12,5 % -макроциты . У остальных эритроцитов диаметр может быть 6 мкм и меньше -микроциты .

Поверхность отдельного эритроцита у человека приблизительно равна 125 мкм 2 , а объём (MCV) – 75-96 мкм 3 .

Эритроциты человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл, они имеют только цитоплазму и плазмолемму (клеточную мембрану).

Плазмолемма эритроцитов

Плазмолемма эритроцитов имеет толщину около 20 нм. Она состоит из примерно равного количества липидов и белков, а также небольшого количества углеводов.

Липиды

Бислой плазмолеммы образован глицерофосфолипидами, сфингофосфолипидами, гликолипидами и холестерином. Внешний слой содержит гликолипиды (около 5% от общего количества липидов) и много холина (фосфатидилхолин, сфингомиелин), внутренний - много фосфатидилсерина и фосфатидилэтаноламина.

Белки

В плазмолемме эритроцита идентифицировано 15 главных белков с молекулярной массой 15-250 кДа.

Белки спектрин, гликофорин, белок полосы 3, белок полосы 4.1, актин, анкирин образуют с цитоплазматической стороны плазмалеммы цитоскелет, который придает эритроциту двояковогнутую форму и высокую механическую прочность. Более 60% всех мембранных белков приходится на спектрин ,гликофорин (есть только в мембране эритроцитов) ибелок полосы 3 .

Спектрин - основной белок цитоскелета эритроцитов (составляет 25% массы всех мембранных и примембранных белков), имеет вид фибриллы 100 нм, состоящей из двух антипаралельно перекрученых друг с другом цепей α-спектрина (240 кДа) и β-спектрина (220 кДа). Молекулы спектрина образуют сеть, которая фиксируется на цитоплазматической стороне плазмалеммы с помощью анкирина и белка полосы 3 или актина, белка полосы 4.1 и гликофорина.

Белок полосы 3 - трансмембранный гликопротеид (100 кДа), его полипептидная цепь которого много раз пересекает бислой липидов. Белок полосы 3 является компонентом цитоскелета и анионным каналом, который обеспечивает трансмембранный антипорт для ионов НСО 3 - и Сl - .

Гликофорин - трансмембранный гликопротеин (30 кДа), который пронизывает плазмолемму в виде одиночной спирали. С наружной поверхности эритроцита к нему присоединены 20 цепей олигосахаридов, которые несут отрицательные заряды. Гликофорины формируют цитоскелет и, через олигосахариды, выполняют рецепторные функции.

Na + ,K + -АТФ-аза мембранный фермент, обеспечивает поддержание градиента концентраций Na + и К + по обе стороны мембраны. При снижении активности Na + ,K + -АТФ-азы концентрация Na + в клетке повышается, что приводит к увеличению осмотического давления, увеличению поступления воды в эритроцит и к его гибели в результате гемолиза.

Са 2+ -АТФ-аза - мембранный фермент, осуществляющий выведение из эритроцитов ионов кальция и поддерживающий градиент концентрации этого иона по обе стороны мембраны.

Углеводы

Олигосахариды (сиаловая кислота и антигенные олигосахариды) гликолипидов и гликопротеидов, расположенные на наружной поверхности плазмолеммы, образуют гликокаликс . Олигосахариды гликофорина определяют антигенные свойства эритроцитов. Они являются агглютиногенами (А и В) и обеспечивают агглютинацию (склеивание) эритроцитов под влиянием соответствующих белков плазмы крови –- и-агглютининов, находящихся в составе фракции-глобулинов. Агглютиногены появляются на мембране на ранних стадиях развития эритроцита.

На поверхности эритроцитов имеется также агглютиноген - резус-фактор (Rh-фактор). Он присутствует у 86% людей, у 14% отсутствует. Переливание резус-положительной крови резус-отрицательному пациенту вызывает образование резус-антител и гемолиз эритроцитов.

Цитоплазма эритроцитов

В цитоплазме эритроцитах содержится около 60% воды и 40% сухого остатка. 95% сухого остатка составляет гемоглобин, он образует многочисленные гранулы размером 4-5 нм. Оставшиеся 5% сухого остатка приходятся на органические (глюкоза, промежуточные продукты ее катаболизма) и неорганические вещества. Из ферментов в цитоплазме эритроцитов присутствуют ферменты гликолиза, ПФШ, антиоксидантной защиты и метгемоглобинредуктазной системы, карбоангидраза.

Поделиться: