Опыты герца. Опыт Франка – Герца Опыт герца по обнаружению электромагнитных волн

Генрих Рудольф Герц (1857-1894) родился в Гамбурге, в семье адвоката, ставшего позже сенатором. Учился Герц прекрасно, любил все предметы, писал стихи и увлекался работой на токарном станке. К сожалению, всю жизнь Герцу мешало слабое здоровье.

В 1875 году после окончания гимназии Герц поступает в Дрезденское, а через год в Мюнхенское высшее техническое училище, но после второго года обучения понимает, что ошибся в выборе профессии. Его призвание - не инженерное дело, а наука. Он поступает в Берлинский университет, где его наставниками оказываются физики Гельмгольц (1821-1894) и Кирхгофф (1824-1887). В 1880 году Герц досрочно оканчивает университет, получив степень доктора. С 1885 года он профессор экспериментальной физики политехнического института в Карлсруэ, где и были проведены его знаменитые опыты.

  • В 1932 году в СССР, а в 1933 году на заседании Международной электротехнической комиссия была принята единица частоты периодического процесса "герц", вошедшая затем в международную систему единиц СИ. 1 герц равен одному полному колебанию за одну секунду.
  • По мнению современника Герца, физика Дж. Томсона (1856-1940), работы Герца представляют собой изумительный триумф экспериментального мастерства, изобретательности и вместе с тем образец осторожности в выводе заключений.
  • Однажды, когда мать Герца сообщила мастеру, обучавшему мальчишку Герца токарному делу, что Генрих стал профессором, тот весьма огорчился и заметил:

Ах, как жаль. Из него получился бы великолепный токарь.

Опыты Герца

Максвелл утверждал, что электромагнитные волны обладают свойствами отражения, преломления, дифракции и т.д. Но любая теория становится доказанной лишь после ее подтверждения на практике. Но в то время ни сам Максвелл, ни кто-либо другой еще не умели экспериментально получать электромагнитные волны. Это произошло только после 1888 года, когда Г.Герц экспериментально открыл электромагнитные волны и опубликовал результаты своих работ.

Виборатор Герца. Открытый колебательный контур.
Идея вибратора Герца. Открытый колебательный контур.

Из теории Максвелла известно,

    излучать электромагнитную волну может только ускоренно движущийся заряд,

    что энергия электромагнитной волны пропорциональна червертой степени ее частоты.

Понятно, что ускоренно заряды движутся в колебательном контуре, поэтому проще всего их использовать для излучения электромагнитных волн. Но надо сделать так чтобы частота колебаний заорядов стала как можно выше. Из формулы Томсона для циклической частоты колебаний в контуре следует, что для повышения частоты надо уменьшать емкость и индуктивность контура.

Суть происходящих в вибраторе явлений коротко заключается в следующем. Индуктор Румкорфа создает на концах своей вторичной обмотки очень высокое, порядка десятков киловольт, напряжение, заряжающее сферы зарядами противоположных знаков. В определенный момент в искровом промежутке вибратора возникает электрическая искра, делающая сопротивление его воздушного промежутка столь малым, что в вибраторе возникают высокочастотные затухающие колебания, длящиеся во все время существования искры. Поскольку вибратор представляет собой открытый колебательный контур, происходит излучение электромагнитных волн.

Приемное кольцо было названо Герцем "резонатором". Опыты показали, что изменением геометрии резонатора - размерами, взаимоположением и расстоянием относительно вибратора - можно добиться "гармонии", или "синтонии" (резонанса) между источником электромагнитных волн и приемником. Наличие резонанса выражалось в возникновении искр в искровом промежутке резонатора в ответ на искру, возникающую в вибраторе. В опытах Герца посылаемая искра была длиной 3-7 мм, а искра в резонаторе - всего несколько десятых долей миллиметра. Увидеть такую искру можно было только в темноте, да и то воспользовавшись лупой.

"Я работаю, как рабочий на заводе и по времени, и по характеру, я по тысяче раз повторяю каждый подъем руки:", - сообщал профессор в письме своим родителям в 1877 году. Насколько трудны были опыты со все же достаточно длинными для исследования их в помещении волнами (по сравнению со световыми) видно из следующих примеров. Для возможности фокусировки электромагнитных волн было выгнуто параболическое зеркало из листа оцинкованного железа размерами 2х1,5м. При помещении вибратора в фокус зеркала создавался параллельный поток лучей. Для доказательства преломления этих лучей из асфальта была сделана призма в виде равнобедренного треугольника с боковой гранью 1,2 м, высотой 1,5 м и массой 1200 кг.

Результаты опытов Герца

После огромной серии трудоемких и чрезвычайно остроумно поставленных опытов с использованием простейших, так сказать, подручных средств экспериментатор достиг цели. Удалось измерить длины волн и рассчитать скорость их распространения. Были доказаны

    наличие отражения,

    преломления,

    дифракции,

    интерференции и поляризации волн.

    измерена скорость электромагнитной волны

После своего доклада 13 декабря 1888 года в Берлинском университете и публикаций 1877 - 78 гг. Герц сделался одним из самых популярных ученых, а электромагнитные волны стали повсеместно именоваться "лучами Герца".

Электромагнитные колебания, возникающие в колебательном контуре, по теории Максвелла могут распространяться в пространстве. В своих работах он показал, что эти волны распространяются со скоростью света в 300 000 км/с. Однако очень многие ученые пытались опровергнуть работу Максвелла, одним из них был Генрих Герц. Он скептически относился к работам Максвелла и попытался провести эксперимент по опровержению распространения электромагнитного поля.

Распространяющееся в пространстве электромагнитное поле называется электромагнитной волной .

В электромагнитном поле магнитная индукция и напряженность электрического поля располагаются взаимно перпендикулярно, и из теории Максвелла следовало, что плоскость расположения магнитной индукции и напряженности находится под углом 90 0 к направлению распространения электромагнитной волны (Рис. 1).

Рис. 1. Плоскости расположения магнитной индукции и напряженности ()

Эти выводы и попытался оспорить Генрих Герц. В своих опытах он попытался создать устройство для изучения электромагнитной волны. Для того чтобы получить излучатель электромагнитных волн, Генрих Герц построил так называемый вибратор Герца, сейчас мы называем его передающей антенной (Рис. 2).

Рис. 2. Вибратор Герца ()

Рассмотрим, как Генрих Герц получил свой излучатель или передающую антенну.

Рис. 3.Закрытый колебательный контур Герца ()

Имея в наличии закрытый колебательный контур (Рис. 3), Герц стал разводить обкладки конденсатора в разные стороны и, в конце концов, обкладки расположились под углом 180 0 , при этом получилось, что если в этом колебательном контуре происходили колебания, то они обволакивали этот открытый колебательный контур со всех сторон. В результате этого изменяющееся электрическое поле создавало переменное магнитное, а переменное магнитное создавало электрическое и так далее. Этот процесс и стали называть электромагнитной волной (Рис. 4).

Рис. 4. Излучение электромагнитной волны ()

Если к открытому колебательному контуру подключить источник напряжения, то между минусом и плюсом будет проскакивать искра, что как раз и есть ускоренно движущийся заряд. Вокруг этого заряда, движущегося с ускорением, образуется переменное магнитное поле, которое создает переменное вихревое электрическое поле, которое, в свою очередь, создает переменное магнитное, и так далее. Таким образом, по предположению Генриха Герца будет происходить излучение электромагнитных волн. Целью эксперимента Герца было пронаблюдать взаимодействие и распространение электромагнитных волн.

Для принятия электромагнитных волн Герцу пришлось сделать резонатор (Рис. 5).

Рис. 5. Резонатор Герца ()

Это колебательный контур, который представлял собой разрезанный замкнутый проводник, снабженный двумя шариками, и эти шарики располагались относительно

друг от друга на небольшом расстоянии. Между двумя шариками резонатора проскакивала искра почти в тот же самый момент, когда проскакивала искра в излучатель (Рис. 6).

Рисунок 6. Излучение и прием электромагнитной волны ()

Налицо было излучение электромагнитной волны и, соответственно, прием этой волны резонатором, который использовался как приемник.

Из этого опыта следовало, что электромагнитные волны есть, они распространяются, соответственно, переносят энергию, могут создавать электрический ток в замкнутом контуре, который находится на достаточно большом расстоянии от излучателя электромагнитной волны.

В опытах Герца расстояние между открытым колебательным контуром и резонатором составляло около трех метров. Этого было достаточно, чтобы выяснить, что электромагнитная волна может распространяться в пространстве. В дальнейшем Герц проводил свои эксперименты и выяснил, как распространяется электромагнитная волна, что некоторые материалы могут препятствовать распространению, например материалы, которые проводят электрический ток, не давали проходить электромагнитной волне. Материалы, которые не проводят электрический ток, давали электромагнитной волне пройти.

Опыты Генриха Герца показали возможность передачи и приема электромагнитных волн. В дальнейшем многие ученые начали работать в этом направлении. Наибольших успехов добился русский ученый Александр Попов, именно ему удалось первому в мире осуществить передачу информации на расстоянии. Это то, что мы сейчас называем радио, в переводе на русский язык «радио» обозначает «излучать», с помощью электромагнитных волн беспроводная передача информации была осуществлена 7 мая 1895 года. В университете Санкт-Петербурга был поставлен прибор Попова, который и принял первую радиограмму, она состояла всего лишь из двух слов: Генрих Герц.

Дело в том, что к этому времени телеграф (проводная связь) и телефон уже существовали, существовала и азбука Морзе, с помощью которой сотрудник Попова передавал точки и тире, которые на доске перед комиссией записывались и расшифровывались. Радио Попова, конечно, не похоже на современные приемники, которыми мы пользуемся (Рис. 7).

Рис. 7. Радиоприемник Попова ()

Первые исследования по приему электромагнитных волн Попов проводил не с излучателями электромагнитных волн, а с грозой, принимая сигналы молний, и свой приемник он назвал грозоотметчик (Рис. 8).

Рис. 8. Грозоотметчик Попова ()

К заслугам Попова относится возможность создания приемной антенны, именно он показал необходимость создания специальной длинной антенны, которая могла бы принимать достаточно большое количество энергии от электромагнитной волны, чтобы в этой антенне индуцировался электрический переменный ток.

Рассмотрим, из каких же частей состоял приемник Попова. Основной частью приемника был когерер (стеклянная трубка, заполненная металлическими опилками (Рис. 9)).

Такое состояние железных опилок обладает большим электрическим сопротивлением, в таком состоянии когерер электрического тока не пропускал, но, стоило проскочить небольшой искорке через когерер (для этого там находились два контакта, которые были разделены), и опилки спекались и сопротивление когерера уменьшалось в сотни раз.

Следующая часть приемника Попова - электрический звонок (Рис. 10).

Рис. 10. Электрический звонок в приемнике Попова ()

Именно электрический звонок оповещал о приеме электромагнитной волны. Кроме электрического звонка в приемнике Попова был источник постоянного тока - батарея (Рис. 7), которая обеспечивала работу всего приемника. И, конечно же, приемная антенна, которую Попов поднимал на воздушных шарах (Рис. 11).

Рис. 11. Приемная антенна ()

Работа приемника заключалась в следующем: батарея создавала электрический ток в цепи, в которую был включен когерер и звонок. Электрический звонок не мог звенеть, так как когерер обладал большим электрическим сопротивлением, ток не проходил, и необходимо было подобрать нужное сопротивление. Когда на приемную антенну попадала электромагнитная волна, в ней индуцировался электрический ток, электрический ток от антенны и источника питания вместе был достаточно большим - в этот момент проскакивала искра, опилки когерера спекались, и по прибору проходил электрический ток. Звонок начинал звенеть (Рис. 12).

Рис. 12. Принцип работы приемника Попова ()

В приемнике Попова кроме звонка был ударный механизм, выполненный таким образом, что ударял одновременно по звоночку и когереру, тем самым встряхивая когерер. Когда электромагнитная волна приходила, звонок звенел, когерер встряхивался - опилки рассыпались, и в этот момент вновь сопротивление увеличивалось, электрический ток переставал протекать по когереру. Звонок переставал звенеть до следующего приема электромагнитной волны. Таким образом и работал приемник Попова.

Попов указывал на следующее: приемник может работать достаточно хорошо и на больших расстояниях, но для этого необходимо создать очень хороший излучатель электромагнитных волн - в этом была проблема того времени.

Первая передача прибором Попова состоялась на расстоянии 25 метров, и буквально за несколько лет расстояние уже составляло более 50 километров. Сегодня при помощи радиоволн мы можем передавать информацию по всему земному шару.

Не только Попов работал в этой области, итальянский ученый Маркони сумел внедрить свое изобретение в производство практически по всему миру. Поэтому первые радиоприемники пришли к нам из-за границы. Принципы современной радиосвязи мы рассмотрим на следующих занятиях.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Какие выводы Максвелла попытался оспорить Генрих Герц?
  2. Дайте определение электромагнитной волны.
  3. Назовите принцип работы приемника Попова.
  1. Интернет-портал Mirit.ru ().
  2. Интернет-портал Ido.tsu.ru ().
  3. Интернет-портал Reftrend.ru ().

Существование дискретных энергетических уровней атома подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц за экспериментальные исследования дискретности энергетических уровней получили Нобелевскую премию в 1925 г.

В опытах использовалась трубка (рис. 6.9), заполненная парами ртути при давлении р ≈ 1 мм рт. ст. и три электрода: катод, сетка и анод.

Электроны ускорялись разностью потенциалов U между катодом и сеткой. Эту разность потенциалов можно было изменять с помощью потенциометра П . Между сеткой и анодом тормозящее поле 0,5 В (метод задерживающих потенциалов).

Определялась зависимость тока через гальванометр Г от разности потенциалов между катодом и сеткой U . В эксперименте была получена зависимость, изображенная на рис. 6.10. ЗдесьU = 4,86 В – соответствует первому потенциалу возбуждения.

Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя в одно из возбужденных состояний. Поэтому если в атомах действительно существуют стационарные состояния, то электроны, сталкиваясь с атомами ртути, должны терять энергию дискретно , определенными порциями , равными разности энергии соответствующих стационарных состояний атома.

Из опыта следует, что при увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно , его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при и .

Ближайшим к основному, невозбужденному состоянию атома ртути является возбужденное состояние, отстоящее по шкале энергий на 4,86 В. Пока разность потенциалов между катодом и сеткой меньше 4,86 В, электроны, встречая на своем пути атомы ртути, испытывают с ними только упругие соударения. При = 4,86 эВ энергия электрона становится достаточной, чтобы вызвать неупругий удар, при котором электрон отдает атому ртути всю кинетическую энергию , возбуждая переход одного из электронов атома из нормального состояния в возбужденное. Электроны, потерявшие свою кинетическую энергию, уже не смогут преодолеть тормозящий потенциал и достигнуть анода. Этим и объясняется резкое падение анодного тока при = 4,86 эВ. При значениях энергии, кратных 4,86, электроны могут испытывать с атомами ртути 2, 3, … неупругих соударения. При этом они полностью теряют свою энергию и не достигают анода, т.е. наблюдается резкое падение анодного тока.

Таким образом, опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала проверку экспериментом.

Атомы ртути, получившие при соударении с электронами энергию , переходят в возбужденное состояние и должны вернуться в основное, излучая при этом, согласно второму постулату Бора, квант света с частотой . По известному значению можно вычислить длину волны светового кванта: . Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с , что действительно обнаружилось в опытах .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ФИЗИКИ

Опыт Франка – Герца

Методические указания к лабораторной работе 22

по физике

(Раздел «Атомная физика»)

Ростов-на-Дону

Составители: А.П.Кудря, О.А.Лещева, И.В.Мардасова,

О.М.Холодова.

Опыт Франка-Герца. Метод. указания / Издательский центр ДГТУ. Ростов-на-Дону. 2011. с

Методические указания предназначены для организации самостоятельной работы студентов при подготовке к лабораторному практикуму и рейтинговому контролю.

Печатается по решению методической комиссии факультета

«Нанотехнологии и композиционные материалы»

Научный редактор: проф., д.т.н. В.С.Кунаков

© Издательский центр ДГТУ, 2011

Опыт франка и герца

Цель работы. 1.Определение первого потенциала возбуждения атомов инертного газа (аргон или криптон) по вольтамперной зависимости I(U) электронной лампы.

2. Определение энергии возбуждения атомов инертного газа, длины волны и массы излученного фотона.

Оборудование: тиратрон ТГ (газонаполненная трехэлектродная лампа), звуковой генератор, вольтметр, осциллограф.

Краткая теория

Согласно планетарной модели атома Э.Резерфорда атом состоит из ядра, имеющего положительный заряд , где
- порядковый номер в таблице Менделеева,- заряд электрона. Вокруг ядра под действием кулоновских сил вращаются
электронов. Атом электрически нейтрален.

Так как электрон в атоме движется с ускорением, то, согласно классической теории, атом должен непрерывно излучать энергию. Это означает, что электрон не может удержаться на круговой орбите – он должен по спирали приближаться к ядру и частота его обращения вокруг ядра, а следовательно, и частота излучаемых им электромагнитных волн, должна непрерывно увеличиваться. Иными словами, электромагнитное излучение должно иметь непрерывный спектр, а сам атом является неустойчивой системой.

В действительности эксперименты показывают, что: а) атом является устойчивой системой; б) атом излучает при определенных условиях; в) излучение атома имеет линейчатый спектр.

Для разрешения противоречий датский ученый Н.Бор в

1913 году предложил следующие постулаты.

Первый постулат (постулат стационарных состояний). Существуют стационарные состояния атома, находясь в которых он не излучает энергию. Этим стационарным состояниям соответствуют вполне определенные стационарные орбиты, по которым движется электрон под действием кулоновской силы.

Второй постулат (правило квантования орбит). Из всех возможных орбит являются разрешенными те, для которых момент импульса электрона пропорционален главному квантовому числу :

, (1)

где:
–постоянная Планка;
– масса электрона;–радиус–й орбиты,- скорость электрона на ней (=1,2,3...).

Третий постулат (правило частот). При переходе из одного стационарного состояния в другое испускается или поглощается один фотон. Энергия фотона равна разности энергий атома в двух его состояниях:

, (2)

если
, то происходит излучение фотона, если
- поглощение фотона.

На основании своих постулатов Бор разработал элементарную теорию водородоподобного атома. В простейшем предположении движение электрона в атоме происходит по круговой орбите радиуса вокруг протона под действием силы Кулона. Уравнение такого движения имеет вид:

(3)

где
- коэффициент пропорциональности.

Из (1) и (3) следует, что скорость электрона на - й орбите

, (4)

тогда радиус – й орбиты:

(5)

где
– боровский радиус.

Кинетическая энергия электрона на – й орбите, с учетом (4)
(6)

Потенциальная энергия электрона на n –ой орбите, с учетом (5)
(7)

Полная энергия электрона на –ой орбите, с учетом (6) и (7),
(8)

Максимальное значение этой полной энергии, равное нулю, достигается при
. Как следует из (8), для удаления электрона от протона, т. е. для ионизации атома водорода, необходима энергия
.

С учетом правила частот (2) поглощать и отдавать энергию атом может лишь порциями, переходя из ‑го состояния в
-ое
(9)

Если энергию фотона (9) выразить через длину волны
то получим сериальную формулу:
(10)

где
- постоянная Ридберга.

Опыт Франка-Герца можно проиллюстрировать с помощью электронной лампы, наполненной инертным газом. Схема измерительной установки приведена на рис.1.

Электронная лампа находится в рабочем состоянии, когда на нить накала НН катода К подано напряжение 6,3 В. Из раскаленного катода вылетают термоэлектроны с разнообразными скоростями и попадают в переменное электрическое поле, создаваемое звуковым генератором ЗГ между управляющей сеткой С и катодом К . Эффективное напряжение
контролируется по вольтметруV .

Когда на сетку лампы подается отрицательный потенциал, ток в анодной цепи отсутствует, лампа заперта. В течение следующего полупериода на сетку лампы подается возрастающий положительный потенциал, лампа открыта. От генератора часть

тока I 1 протекает по цепи сетка - катод, другая часть тока I 2 – по цепи резистор R - анод А - катод К (см. рис.1). Ток I 2 создает на резисторе R небольшое падение напряжения, приложенное к электродам ламы сетка – анод. Благодаря этому напряжению электроны движутся в области сетка – анод в слабом тормозном электрическом поле. В области катод – сетка движение электронов ускоренное.

В ускоряющем поле электроны приобретают дополнительную кинетическую энергию. Если эта энергия меньше энергии возбуждения атомов инертного газа, то электроны испытывают с ними упругие столкновения без потери энергии. При этом электроны приобретают скорость, достаточную для преодоления небольшого задерживающего напряжения между анодом и сеткой лампы. В анодной цепи протекает ток. С увеличением напряжения между сеткой и катодом лампы анодный ток возрастает до тех пор, пока, это напряжение не достигнет значения первого потенциала возбуждения атомов инертного газа. При этом электроны, прошедшие ускоряющую разность потенциалов между катодом и сеткой лампы, приобретают энергию, достаточную для перевода атомов инертного газа из основного состояния в первое возбужденное состояние. В результате неупругих столкновений с атомами инертного газа скорость большинства электронов уменьшается и они не могут преодолеть задерживающее напряжение между анодом и сеткой лампы, что приводит к уменьшению анодного тока I 2 . Падение напряжения на резисторе U R , созданное током I 2 , подается на вертикально отклоняющие пластины ЭЛТ . На горизонтально отклоняющие пластины электронно-лучевой трубки (ЭЛТ ) подается напряжение пилообразной формы от генератора развертки ГР . При равенстве частот генератора развертки и звукового генератора на экране осциллографа наблюдается устойчивая осциллограмма (см. рис.1). По осциллограмме можно определить первый потенциал возбуждения атомов инертного газа по уменьшению анодного тока (I 2 ~ U R ).

Измерив критическое значение
, при котором на осциллограмме появляется первый минимум, можно определить энергию возбуждения атомов инертного газа, равную разности энергий первого возбужденного и основного состояний атома:

, (11)

где
- амплитуда синусоидального напряжения на выходе генератора,
- заряд электрона.

Атомы инертного газа, возбужденные в результате неупругого взаимодействия с электронами, по прошествии очень короткого времени (~10 -8 с ), вновь возвращаются в основное состояние, испуская при этом квант света (фотон), энергия которого равна разности энергий возбужденного и основного состояний и определяется по формуле (11).

Возбужденный атом инертного газа высвобождает поглощенную энергию, испуская фотон. При энергии возбуждения E длина волны и масса такого фотона соответственно равны:
; (12)

, (13)

где
- постоянная Планка,

- скорость света в вакууме.

Электромагнитные волны (ЭМВ) – это электромагнитное поле, которое распространяется с разной скоростью в зависимости от среды. Скорость распространения таких волн в вакуумном пространстве равна световой скорости. ЭМВ могут отражаться, преломляться, подвергаться дифракции, интерференции, дисперсии и др.

Электромагнитные волны

Электрический заряд приводится в колебания по линии подобно пружинному маятнику с очень высокой скоростью. В это время электрическое поле вокруг заряда начинает меняться с периодичностью, равной периодичности колебаний этого заряда. Непостоянное электрическое поле обусловит появление непостоянного магнитного поля. Оно в свое время породит меняющееся c определенными периодами электрическое поле на большей дистанции от электрического заряда. Описанный процесс будет происходить еще не один раз.

В итоге появляется целая система непостоянных электрических и магнитных полей около электрического заряда. Они оцепляют все большие площади пространства вокруг до определенного предела. Это и есть электромагнитная волна, которая распределяется от заряда во все стороны. В каждой отдельно взятой точке пространства оба поля изменяются с разными временными периодами. До точки, расположенной близко к заряду, колебания полей добираются быстро. До более отдаленной точки – позднее.

Необходимым условием для появления электромагнитных волн является ускорение электро-заряда. Его скорость должна изменяться со временем. Чем выше ускорение движущегося заряда, тем более сильное излучение имеют ЭМВ.

Электромагнитные волны излучаются поперечно – вектор напряженности электрического поля занимает место под 90 градусов к вектору индукции магнитного поля. Оба эти вектора идут под 90 градусов к направлению ЭМВ.

О факте наличия электромагнитных волн писал еще Майкл Фарадей в 1832 году, но теорию электромагнитных волн вывел Джеймс Максвелл в 1865 году. Обнаружив, что скорость распространения электромагнитных волн равняется известной в те времена световой скорости, Максвелл выдвинул обоснованное предположение о том, что свет – это не что иное, как электромагнитная волна.

Однако опытным путем подтвердить правильность максвелловской теории удалось лишь в 1888 году. Один немецкий физик не поверил Максвеллу и решил опровергнуть его теорию. Однако проведя экспериментальные исследования, он только подтвердил их существование и опытным путем доказал, что ЭМВ и вправду есть. Благодаря своим работам по исследованию поведения электромагнитных волн, он прославился на весь мир. Его звали Генрих Рудольф Герц.

Опыты Герца

Высокочастотные колебания, которые существенно превышают частоту тока в наших розетках, возможно произвести с помощью катушки индуктивности и конденсатора. Частота колебаний будет увеличиваться при уменьшении индуктивности и емкости контура.

Правда, не все колебательные контуры позволяют извлечь волны, которые можно легко обнаружить. В закрытых колебательных контурах происходит обмен энергией между емкостью и индуктивностью, а количество энергии, которое уходит в окружающую среду для создания электромагнитных волн слишком мало.

Как увеличить интенсивность электромагнитных волн, чтобы появилась возможность их детектировать? Для этого нужно увеличить расстояние между обкладками конденсатора. А сами обкладки уменьшить в размере. Потом еще раз увеличить и еще раз уменьшить. До тех пор, пока мы не придем к прямому проводу, только немного необычному. У него есть одна особенность – нулевая сила тока на концах и максимальная в середине. Это называется открытый колебательный контур.

Экспериментируя, Генрих Герц пришел к открытому колебательному контуру, который назвал «вибратором». Он представлял из себя два шара-проводника диаметром около 15 сантиметров, монтированных на концах рассеченного пополам стержня из проволоки. Посередине, на двух половинах стержня также находятся два шарика меньшего размера. Оба стержня подключались к индукционной катушке, которая выдавала высокое напряжение.

Вот как работает прибор Герца. Индукционная катушка создает очень высокое напряжение и выдает разноименные заряды шарам. Через некий отрезок времени в зазоре между стержнями возникает электрическая искра. Она снижает сопротивление воздуха между стержнями и в контуре появляются затухающие колебания высокой частоты. А, так как, вибратор у нас является открытым колебательным контуром он начинает излучать при этом ЭМВ.

Чтобы детектировать волны используется устройство, которое Герц назвал «резонатор». Оно представляет собой разомкнутое кольцо или прямоугольник. На концах резонатора было установлено два шарика.В своих опытах Герц пытался найти правильные размеры для резонатора, его положение относительно вибратора, а также расстояние между ними. При правильно подобранном размере, положении и дистанции между вибратором и резонатором возникал резонанс. В этом случае электромагнитные волны, которые испускает контур производят электрическую искру в детекторе.

С помощью подручных средств, а именно, листа железа и призмы, сделанной из асфальта, этому невероятно находчивому экспериментатору удалось вычислить длины распространяемых волн, а также скорость, с которой они распространяются. Он также обнаружил, что эти волны ведут себя точно так же, как и остальные, а значит могут отражаться, преломляться, быть подвержены дифракции и интерференции.

Применение

Исследования Герца привлекли внимание физиков по всему миру. Мысли о том, где можно применить ЭМВ возникали у ученых то тут, то там.

Радиосвязь – способ передачи данных путем излучения электромагнитных волн частотой от 3×104 до 3×1011 Герц.

В нашей стране родоначальником радиопередачи электромагнитных волн стал Александр Попов. Сначала он повторял опыты Герца, а затем воспроизводил опыты Лоджа и построил собственную модификацию первого в истории радиоприемника Лоджа. Главное отличие приемника Попова заключается в том, что он создал устройство с обратной связью.

В приемнике Лоджа использовалась стеклянная трубка с опилками из металла, которые меняли свою проводимость под действием электромагнитной волны. Однако он срабатывал лишь раз, а, чтобы зафиксировать еще один сигнал, трубку надо было встряхнуть.

В приборе Попова волна, достигая трубки включала реле, по которому срабатывал звонок и приводилось в работу устройство, ударявшее молоточком по трубке. Оно встряхивало металлические опилки и тем самым давало возможность зафиксировать новый сигнал.

Радиотелефонная связь – передача речевых сообщений посредством электромагнитных волн.

В 1906 году был изобретен триод и уже через 7 лет был создан первый ламповый генератор незатухающих колебаний. Благодаря этим изобретениям стала возможна передача коротких и более длинных импульсов ЭМВ, а также изобретение телеграфов и радиотелефонов.

Звуковые колебания, которые передаются в трубку телефона перестраиваются в электрический заряд той же формы посредством микрофона. Однако звуковая волна – это всегда волна низкочастотная, чтобы электромагнитные волны в достаточной степени сильно излучалась у нее должна быть высокая частота колебания. Изобретатели решили эту проблему очень просто.

Высокочастотные волны, которые вырабатываются генератором, применяются для передачи, а низкочастотные звуковые волны применяются для модуляции высокочастотных волн. Другими словами, звуковые волны изменяют некоторые характеристики высокочастотных волн.

Итак, это были первые приборы, сконструированные на принципах электромагнитного излучения.

А вот где электромагнитные волны можно встретить сейчас:

  • Мобильная связь, Wi-Fi, телевидение, пульты ДУ, СВЧ-печи, радары и др.
  • ИК приборы ночного видения.
  • Детекторы фальшивых денег.
  • Рентгеновские аппараты, медицина.
  • Гамма-телескопы в космических обсерваториях.

Как видно, гениальный ум Максвелла и необычайная изобретательность и работоспособность Герца дали начало целому ряду приборов и бытовых вещей, которые сегодня являются неотъемлемой частью нашей жизни. Электромагнитные волны делятся по диапазону частот, правда, весьма условно.

В следующей таблице вы можете видеть классификацию электромагнитного излучения по диапазону частот.

Поделиться: