Температура кабеля под нагрузкой гост. Допустимая температура нагрева кабеля

Силовая кабельная линия - это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена - 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента - кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

  • солончаковые;
  • известковые;
  • песчаные;
  • черноземные;
  • глинистые;
  • торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Конструктивный элемент кабеля Материал Буквенное обозначение
Жила Медь Алюминий Нет буквы А
Изоляция жил Нет буквы П В Р
Поясная изоляция Бумажная Полиэтиленовая Поливинилхлоридная Резиновая Нет буквы П В Р
Оболочка Свинцовая Алюминиевая гладкая Алюминиевая гофрированная Поливинилхлоридная Полиэтиленовая негорючая резина С А Аг
В П Н
Подушка Бумага и битум Без подушки Полиэтиленовая (шланг) Поливинилхлоридная: один слой пластмассовой ленты типа ПХВ два слоя пластмассовой ленты типа ПХВ Нет буквы б вл2л
Броня Стальная лента Проволока плоского сечения Проволока круглого сечения Б
П К
Наружный кабельный покров Кабельная пряжа Без наружного кабельного покрова Стеклянная пряжа из штапелированного волокна (негорючий кабельный покров) Полиэтиленовый шланг Поливинилхлоридный шланг Нет буквы,ГН ШпШв

Примечание:

  1. Буквы в обозначении кабеля располагаются в соответствии с конструкцией кабеля, т.е. начиная от материала жилы и заканчивая наружным кабельным покровом.
  2. Если в конце буквенной части марки кабеля стоит буква "П", написанная через черточку, то это означает, что кабель имеет по сечению плоскую форму, а не круглую.
  3. Обозначение контрольного кабеля отличается от обозначения силового кабеля только тем, что после материала жилы кабеля ставится буква "К".

После букв стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее широкое применение находят кабели следующих стандартных сечений жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.

Страница 20 из 23

Измерение температуры оболочек кабеля необходимо производить в местах, в которых кабель работает в наиболее тяжелом режиме (места пересечения кабеля с тепло- и паропроводами, в пучках действующих кабельных линий, на участках трассы с сухим или имеющим большое тепловое сопротивление грунтом), в период максимальной нагрузки кабеля.
Для определения температурного перепада Д£каб за t0б следует принимать максимальное значение температуры, а за величину тока I - максимальную нагрузку линии.
Измерение температур нагрева оболочек кабелей или окружающей среды может производиться с помощью термопар, термосопротивлений или термометров.
При контроле нагрева кабелей следует иметь в виду следующие диапазоны температур, с которыми наиболее часто приходится встречаться: температура оболочек кабеля до +60"С; температура грунта от -5 до + 25° С; температура воздуха от -40 до +45иС.
Из приведенных данных следует, что диапазоны температур составляют лишь несколько десятков градусов, причем нередко разность температур оболочек кабеля и окружающей среды составляет более 10-20" С. Это требует применения весьма чувствительных термоиндикаторов.

а) Метод термопары

При контроле нагрева кабеля термопарами необходимо, чтобы в рабочем диапазоне температур они создавали э. д. с. порядка 0,5-1 мв, что позволит применить имеющиеся в лабораториях милливольтметры и гальванометры.
Наиболее чувствительными являются термопары, изготовляемые из сплавов хромель - копель, развивающие термо-э. д. с. в 6,9 мв на 100° С.
Могут применяться также медьконстантановые термопары (4 мв на 100°С).
Термопары должны иметь два спая, один из которых размещается на кабеле, а другой - в точке, в которой температура все время фиксируется чувствительным и точным термометром (температура «холодного» спая).
Для создания хорошего контакта термопары с оболочкой кабеля целесообразно рабочий спай зачеканить в свинцовый лепесток (диск диаметром 3-4 см, толщиной 2-3 мм) и применять, как их называют на практике, «лепестковые» термопары. Такой лепесток надежно закрепляется на кабеле тафтяной или киперной лентой.
При отсутствии лепестковых термопар под рабочий спай следует вначале подложить мягкий станиоль и лишь после этого плотно прижать термопару к оболочке кабеля путем обмотки плотной тканевой лентой.
При контроле нагрева кабеля в одном месте следует закладывать не менее двух термопар для взаимного контроля показаний и резерва на случай поломки рабочего спая.
Обычно на практике приходится контролировать на каком-либо участке температуру нескольких по соседству расположенных кабелей, на которых закладывается группа термопар (до 10-20 шт.).
Все холодные спаи этих термопар обычно выводятся в одно место, в котором их температура фиксируется термометром. При этом к полученному отсчету температуры по шкале прибора необходимо прибавить температуру окружающей среды (в месте нахождения концов «холодного» спая), если она положительна, и отнять, если она отрицательна.

Хорошо размещать «холодные» спаи в сосуде с тающим льдом или снегом. Это дает устойчивую температуру «холодных» спаев 0°С до тех пор, пока не растает весь лед или снег, а показания милливольтметра (градуированного обычно в градусах) сразу дают температуру оболочек кабелей в градусах Цельсия без поправки на температуру окружающей среды, поскольку она равна нулю.
Концы термопар присоединяются к контактору с переключателем, к которому во время измерений присоединяются переносной милливольтметр (гальванометр).
Для измерений могут применяться также потенциометры с чувствительностью не менее 0,05 мв на деление.

б) Метод термосопротивлений

Более чувствительным методом является контроль нагрева кабелей с помощью термосопротивлений.
Термосопротивления изготовляются из тонкой изолированной проволоки диаметром 0,05-0,07 мм имеющей большой температурный коэффициент (изменение сопротивления при нагреве)
Величина термосопротивления должна быть не менее 5-10 Ом (обычно 20-30 Ом).
Несколько метров тонкой проволоки укрепляют на куске плотного листового электрокартона так, чтобы жилы проволоки были расположены на одной стороне листа (рис. 45). Выводные концы сопротивлений для большей механической прочности выполняют из более толстой изолированной проволоки.
Для того чтобы нити проволоки не расползались и не перепутывались, необходимо закрепить их на пластинке бакелитовым лаком.

Рис. 45. Намотка термосопротиилений для измерений температур на оболочках кабелей.
1 - концы для присоединения термоэлемента к мостику; 2 - переход на провод большого сечения.
Для предохранения нитей проволоки от обрыва на них следует наложить сверху кусок тонкой кабельной бумаги, также смазав ее бакелитовым лаком.
После изготовления термосопротивления листу, на котором оно закреплено, следует придать цилиндрическую форму, намотав его на стержень диаметром 40- 50 мм.
Величина омического сопротивления термоэлементов после одночасовой выдержки при неизменной температуре точно измеряется на мостике.
Так, например, если термосопротивление изготовлено из медной проволоки диаметром 0,05 мм и имеет при комнатной температуре (+20° С) сопротивление, равное 20 Ом, то при изменении температуры кабеля на 1°С изменение сопротивления составит около 0,1 Ом, что с достаточной для практики точностью может быть установлено обычными измерительными мостиками.
Иногда, исходя из местных условий, термосопротивление должно иметь очень малые размеры, например для закладки на свинцовую оболочку кабелей в просветах нижней брони ленты (верхняя бронелента разрезается). В этих случаях следует применять очень тонкую проволоку с высоким удельным сопротивлением.
В последнее время для измерения температур кабелей нашли применение полупроводниковые термосопротивления.

в) Метод термометра

В том случае, когда кабели расположены в туннеле, канале или помещениях, их температуру можно контролировать непосредственно термометрами. Шкала термометров должна быть не более 50-100° С.
Термометр в целях удобства подсоединения к кабелю должен иметь конец с ртутной головкой, изогнутой под прямым углом. Под ртутную головку термометра подкладывается мягкий станиоль, после чего термометр плотно прижимается к кабелю путем намотки и затяжки тканевой лентой.
Если желательна непрерывная или периодическая автоматическая регистрация температур нагрева кабелей, то термопары или термосопротивления должны быть подсоединены к специально установленным для этой цели электронным потенциометрам типа ЭПД-07, ЭПД-12, ЭПП 09.
При закладке термопар, термосопротивленнй пли термометров важно сохранить без изменений условия охлаждения кабелей.
В туннелях или каналах это касается вентиляции кабелей. Не допускается установка каких-либо перегородок, заполнение чем бы то ни было пространств между отдельными полками и т. д.
При траншейных прокладках кабелей, после того как заложены термопары или термосопротивления, яму засыпают и утрамбовывают тем же грунтом.
Измерение температур можно начинать не ранее чем через сутки после закрытия ямы и восстановления покровов над кабелями. Это диктуется необходимостью прогрева грунта и создания нормального теплового поля вокруг кабеля.
Концы от термопар или сопротивлений выводятся на стену какого-либо находящегося рядом помещения или размещаются и укрепляются в специально оборудованном для этой цели контрольном колодце.
В зависимости от результатов контроля увеличивается или уменьшается нагрузка кабельной линии или принимаются меры по улучшению охлаждения кабелей.

Температура нагрева жил кабеля, на котором монтируется заделка типа КВВ, при длительной нагрузке не должна превышать 65 С. Заделки этого типа обладают высокой химической стойкостью, за исключением концентрированной соляной кислоты, хлороуглево-дородов и других материалов, разрушающе действующих на поли-винилхлорид.
Температура нагрева жил кабеля, а следовательно, и ток ограничиваются допустимой температурой для изоляции кабеля и зависят от материала изоляции хшл кабеля. Сечение кабеля выбирается по таблицам ПУЭ, которые учитывают температуру жилы кабеля.
Температуру нагрева жил кабеля контролируют термометром (термопарой), установленным на оболочке кабеля.
Тепловой перепад Д для кабелей 16 - 240 мм2 в зависимости от тока нагрузки. Проверка температуры нагрева жил кабелей производится измерением температур их металлических оболочек.
Тепловой перепад Д (для кабелей 16 - 240 мм2 в зависимости от тока нагрузки. Проверка температуры нагрева жил кабелей производится измерением температур их металлических оболочек. Для измерений рекомендуется применять терморезисторы или термопары и лишь в крайнем случае термометры.
Условные обозначения подземных сооружений. Непосредственно измерить температуру нагрева жил кабеля весьма сложно, поэтому контроль за нагревом кабелей в процессе их эксплуатации ведут измерением температуры нагрева оболочки кабеля.
В табл. 1 - 65 приведены допустимые превышения температуры нагрева жил кабелей при коротком замыкании. При этом принято, что до момента короткого замыкания температура жил кабеля не превышала допустимой температуры по нагреву в длительном режиме.
Для повышения долговечности кабелей данного типа необходимо установить температуру нагрева жил кабелей не более 90 С.
Такие кабели после воздействия тока короткого замыкания должны быть осмотрены, концевые заделки при необходимости отремонтированы, а также должны быть проведены испытания повышенным напряжением. При температуре нагрева жил кабелей выше указанных значений, кабели считаются непригодными к дальнейшей эксплуатации и подлежат немедленной замене.
Допустимые длительные токовые нагрузки на кабели напряжением до 35 ко включительно с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или слоистой полихлорвя-ниловой оболочке приняты в соответствии с допустимы-мя температурами нагрева жил кабелей по ГОСТ.
Прокладка кабелей внутри коробов должна осуществляться в соответствии с требованиями ПУЭ, предъявляемыми к прокладке кабелей в кабельных каналах. При этом расстояние от конструкций до передней стенки короба не нормируется. Температура нагрева жил кабелей должна быть не более указанной в § 1 - 3 - 9 ПУЭ.
Потери в кабеле складываются из потерь в жилах, изоляции и в оболочке. Потери в изоляции и оболочке могут быть ничтожно малыми или значительными. Поток тепла, вызванный потерями во всех элементах кабеля, идет в радиальном направлении от центра кабеля наружу через тепловое сопротивление различных элементов и вызывает общий перегрев кабеля. Этот перегрев с учетом основной температуры почвы и обусловливает температуру на жиле кабеля. Температура нагрева жилы кабеля не должна превышать предела, установленного для данной изоляции.

Правильно рассчитанная и надлежащим образом выполненная электрическая сеть не гарантируют исключение возможности возникновения аварийных ситуаций, приводящих к недопустимому перегреву электрических при возникновении короткого замыкания.

Например, подобная ситуация, как отмечалось в работе возникает при подключении нагрузки в розеточную сеть через удлинитель. Начиная с некоторой длины добавленного к групповой линии провода удлинителя сопротивление цепи фаза - ноль увеличивается до значения, при котором ток короткого замыкания будет меньше порога срабатывания электромагнитного расцепителя автоматического выключателя. Поэтому при электроустановок желательно учитывать возможность нештатных условий эксплуатации электропроводки.

В соответствии с «Предельные температуры электрических кабелей на номинальное напряжение 1кВ в условиях короткого замыкания» температура жил кабеля (до 300 мм 2 включительно) с изоляцией из ПВХ пластиката при коротком замыкании не должна превышать 160 градусов. Достижение этой температуры допускается при длительности короткого замыкания до 5 секунд. При такой продолжительности короткого замыкания изоляция кабеля не успевает нагреться до такой же температуры. При более длительных коротких замыканиях предельная температура нагрева жил должна быть уменьшена.

Рассмотрим возникновение подобной ситуации на примере использования автоматического выключателя группы «С». Время - токовая характеристика выключателя приведена на Рис. 1. В приведенных характеристиках выделены зона «a» - тепловой расцепитель и зона «b» - электромагнитный расцепитель. На графике показаны две кривые 1 и 2 зависимости времени срабатывания выключателя от тока, которые показывают пределы технологического разброса параметров выключателя при его изготовлении. Для автоматических выключателей группы «С» в пределах технологического разброса кратность тока срабатывания электромагнитного расцепителя к номинальному току срабатывания теплового расцепителя находится в пределах от 5 до 10. Нас интересует только кривая 2 для переменного тока (АС), показывающая максимальное время срабатывания выключателя. Как видно из графика на Рис. 1, при незначительном уменьшении тока короткого замыкания ниже порога срабатывания электромагнитного расцепителя время срабатывания автоматического выключателя определяется тепловым расцепителем и достигает величины порядка 6 секунд .

Рис. 1 Время - токовая характеристика автоматов группы С.

Попробуем выяснить, что происходит с кабелями за промежуток времени, в течение которого сработает тепловой расцепитель. Для этого необходимо вычислить зависимости температуры жил кабелей от времени прохождения по ним токов, близких к порогу срабатывания электромагнитного расцепителя.

В Таблице 1 даны расчетные значения температур жил кабелей в зависимости от продолжительности короткого замыкания (при разных токах) для кабеля с медными жилами сечением 1,5 кв. мм. Кабель данного сечения повсеместно используется в осветительных жилых и общественных зданий.

Для вычисления температур жил кабелей использована методика расчета из «Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева».

Температура жил кабеля определяется по формуле:

Θ f = (Θ i +β)∙exp(I AD 2 ∙t/K 2 ∙S 2) - β (1)

где, Θ f - конечная температура жил кабеля о С;

Θ i - начальная температура жил кабеля о С;

β - величина, обратная температурному коэффициенту сопротивления при 0 °C, К, для меди β=234,5;

K - постоянная, зависящая от материала токопроводящего элемента, А · с 1/2 /мм 2 ,для меди K=226;

t - длительность короткого замыкания, с;

S - площадь поперечного сечения токопроводящей жилы, мм 2 ;

I SC - известный максимальный ток короткого замыкания (среднеквадратичное значение), А;

I AD =I SC /ε - ток короткого замыкания, определенный на основе адиабатического нагрева (среднеквадратичное значение), А;

ε - коэффициент, учитывающий отвод тепла в соседние элементы;

X, Y - постоянные, используемые в упрощенной формуле для жил и проволочных экранов, (мм 2 /с) 1/2 ; мм 2 /с, для кабелей с медными жилами и изоляцией из ПВХ пластиката X=0,29 и Y=0,06;

Вычисления произведены для температуры кабеля до короткого замыкания 55 градусов. Такая температура соответствует рабочему току, проходящему по кабелю до возникновения короткого замыкания порядка 0,5 - 0,7 от предельно допустимого длительного тока при температуре окружающей среды 30 - 35 градусов. В зависимости от предполагаемых условий эксплуатации электроустановки температура жил кабелей до короткого замыкания при проектировании электрической сети может быть изменена.

Таблица 1

Тнач, град

Сеч. жил, мм.кв

Ток к.з., A

Из Таблицы 1 видно, что максимальный ток короткого замыкания (при несрабатывании электромагнитного расцепителя), который не вызывает нагрев жил выше 160 градусов за время 6 секунд равен примерно 100 А. То есть кабель с сечением 1,5 мм 2 можно защищать автоматическим выключателем группы «С» с номинальным током не более 10А.

При изготовлении кабелей сечение жил часто занижают. Занижение сечения на 10% обычное явление. На рынках не сложно найти кабели и с большим занижением сечения.

В Таблице 2 даны расчетные значения температур жил кабелей при занижении сечения на 10%. Как видно из таблицы, такой кабель автоматический выключатель С10 защищает не со 100 процентной надежностью.

Для наиболее ответственных объектов, в особенности имеющих строительные конструкции из сгораемых материалов, целесообразно выбор автоматического выключателя при проектировании электроустановки осуществлять по Таблице 3, в которой сечения жил даны с 20% занижением. Защиту таких кабелей обеспечит автоматический выключатель С6, либо В10, у которого кратность тока срабатывания электромагнитного расцепителя к номинальному току срабатывания теплового расцепителя находится в пределах от 3 до 5. Это позволит существенно увеличить надежность электропроводки.

Таблица 2

Тнач, град

Сеч. жил, мм.кв

Ток к.з., A

Температура медных жил кабеля с изоляцией из ПВХ пластиката град., при коротком замыкании длительностью, сек:

Таблица 3

Тнач, град

Сеч. жил, мм.кв

Ток к.з., A

Температура медных жил кабеля с изоляцией из ПВХ пластиката град., при коротком замыкании длительностью, сек:

При выборе кабеля учитывается масса самых разных параметров, начиная от сечения жил и заканчивая материалом изоляции. Почему важно знать такие подробности, как материал оболочки? Ведь его основная функция - защищать от поражения электрическим током. Если изоляция справляется с этой задачей, то нужно больше внимания уделить более важным характеристикам кабеля. К сожалению, подобную ошибку делают многие, на самом деле допустимая температура нагрева кабеля и материал изоляции необыкновенно связаны между собой. Каждый тип защитной оболочки рассчитан на определенную температуру, если она превышает определенные значения, то ускоряется процесс старения изоляции. Это серьезным образом влияет на срок эксплуатации кабеля, а не редко и подключенного с его помощью оборудования. Допустимая температура нагрева кабеля это тот параметр, от которого зависит не только нагрузочная способность кабеля, но и надежность его работы. Допустимая температура нагрева кабеля с изоляцией разного типаВсе виды материалов, используемых в качестве изоляции токопроводящих жил, имеют свои физические характеристики. Они обладают разной плотностью, теплоемкостью, теплопроводностью. В итоге это влияет на их способность выдерживать нагрев, так вулканизирующий полиэтилен может сохранять свои эксплуатационные характеристики вплоть до 90ºС. С другой стороны резиновая изоляция способна выдержать существенно меньшую температурную нагрузку - всего 65ºС. Допустимая температура нагрева кабеля с ПВХ - 70 градусов и это один из наиболее оптимальных показателей. Одним из наиболее важных показателей является допустимая температура нагрева кабеля с . Этот вид кабеля используется чрезвычайно широко и предназначен для работы с разным напряжением. Именно поэтому следует внимательно относиться в данной характеристике, она меняется следующим образом:

  • для напряжения 1-2 кВ максимально допустимая температура для кабелей с обедненной и вязкой пропиткой составляет 80ºС;
  • для напряжения 6 кВ изоляция с вязкой пропиткой выдерживает 65ºС, с обедненной пропиткой 75ºС;
  • для напряжения 10 кВ допустимая температура 60ºС;
  • для напряжения 20 кВ допустимая температура 55ºС;
  • для напряжения 35 кВ допустимая температура 50ºС.

Все это требует повышенного внимания к длительной максимальной нагрузке кабеля, условиям эксплуатации. Еще одним из востребованных сегодня в электротехнической промышленности материала для изоляции является сшитый полиэтилен. Он имеет сложную структуру, обеспечивающую уникальные эксплуатационные характеристики. Допустимая температура нагрева кабеля и изоляцией из сшитого полиэтилена составляет 70ºС. Одним из лидеров по данному параметру является силиконовая резина, способная выдерживать 180ºС. К чему может привести перегрев кабеляПревышение допустимой температуры нагрева кабеля приводит к тому, что свойства изоляции кардинально меняются. Она начинает покрываться трещинами, осыпаться, в результате возникает риск короткого замыкания. Срок службы кабеля с каждым превышенным градусом серьезно сокращается. Это требует более частого ремонта, затрат, поэтому лучше изначально использовать тот кабель, который предназначен для решения определенных задач. Но и этого не достаточно, необходимо регулярно контролировать температуру оболочки, особенно в тех места, где можно предположить наличие перегрева. Это могут быть места рядом с теплопроводами или создаются неблагоприятные условия для охлаждения.

Поделиться: